Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.17.21267976

ABSTRACT

COVID-19 vaccination campaign has been launched around the world. More than 8 billion vaccines doses have been administered, according to the WHO. Published studies shows that vaccination reduces the number of COVID-19 cases and dramatically reduces COVID-19-associated hospitalizations and deaths worldwide. In turn, the emergence of SARS-CoV-2 variants of concern (VOC) with mutations in the receptor-binding domain (RBD) of S glycoprotein poses risks of diminishing the effectiveness of the vaccination campaign. In November 2021, the first information appeared about a new variant of the SARS-CoV-2 virus, which was named Omicron. The Omicron variant is of concern because it contains a large number of mutations, especially in the S glycoprotein (16 mutation in RBD), which could be associated with resistance to neutralizing antibodies (NtAB) and significantly reduce the effectiveness of COVID-19 vaccines. Neutralizing antibodies are one of the important parameters characterizing the protective properties of a vaccine. We conducted a study of neutralizing antibodies in the blood serum of people vaccinated with Sputnik V, as well as those revaccinated with Sputnik Light after Sputnik V. Results showed that a decrease in the level of neutralizing antibodies was observed against SARS-CoV-2 Omicron (B.1.1.529) variant in comparison to B.1.1.1 variant. Analysis of the sera of individuals vaccinated with Sputnik V 6-12 months ago showed that there was a decrease in the level of neutralizing antibodies by 11.76 folds. While no direct comparison with other vaccines declines has been done in this study, we note their reported decline in antibody neutralization at a much more significant level of 40-84 times. At the same time, the analysis of sera of individuals who were vaccinated with Sputnik V, and then revaccinated Sputnik Light, showed that 2-3 months after revaccination the decrease in the level of neutralizing antibodies against the Omicron variant was 7.13 folds. Despite the decrease in NtAb, we showed that all revaccinated individuals had NtAb to Omicron variant. Moreover, the NtAb level to Omicron variant in revaccinated sera are slightly higher than NtAb to B.1.1.1 in vaccinated sera.


Subject(s)
COVID-19 , Encephalomyelitis, Acute Disseminated
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.24.469842

ABSTRACT

Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma and Delta variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL